If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-2200=0
a = 1; b = 15; c = -2200;
Δ = b2-4ac
Δ = 152-4·1·(-2200)
Δ = 9025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9025}=95$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-95}{2*1}=\frac{-110}{2} =-55 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+95}{2*1}=\frac{80}{2} =40 $
| F(-2)=7x^2+2x-5 | | t/20+9=16 | | 179-u=292 | | 4m14=18 | | x2−2x−1=8 | | 5n^2+n-510=0 | | F(-2)=8x-5 | | 6x+15=72 | | 29z+14=9z+2(7+10z) | | -9=y/7=-12 | | (200-x)/x=1.54 | | 2x^2-4x-912=0 | | 11/6=n+7/6 | | 4x=0.5(x+4+24) | | 16-2x=-3x+6x+1 | | 50+9k=239 | | x/(200-x)=1.54 | | 651=957-d | | 12=4v-4 | | 8(10-9u)+70u+2u=4 | | 9x-19=3x+23 | | 49+c=105.80 | | 9x-7=2x+49 | | 4x2-30=0 | | 118-v=210 | | 6x+14=-5x+4+9x | | =92+160t-1+-16t | | g−7815= 30 | | g−781/5= 30 | | 48=2w+16= | | 15(v+14)=780 | | v/8+93=105 |